Seminar Series for Postgraduate Students

How to Write a Scientific Review

Monday, 14th December, 2020 at 15:00 (PST)

Vice Chancellor

Prof. Dr. Qamar-uz-Zaman

PMAS-Arid Agriculture

University, Rawalpindi

Keynote Speaker

Dr. Muhammad Waqas Alam

Assistant Professor, ASAB

National University of Sciences & Technology

Moderator
Rizwan Rafique
PhD Scholar
Horticulture, PMAS-AAUR

Discussant
Muhammad Ajmal Bashir
PhD Scholar Horticulture
PMAS-AAUR / Research Fellow
University of Tuscia, Italy

Discussant

Muhammad Basir Shah

PhD Scholar UIBB

PMAS-AAUR

Writing a Scientific Review!

MUHAMMAD AJMAL BASHIR

Ph. D Scholar (PMAS-AAUR)
Senior Research Fellow (University of Tuscia, Italy)
In collaboration with (CREA-Council for Agricultural Research and Economics, Italy)

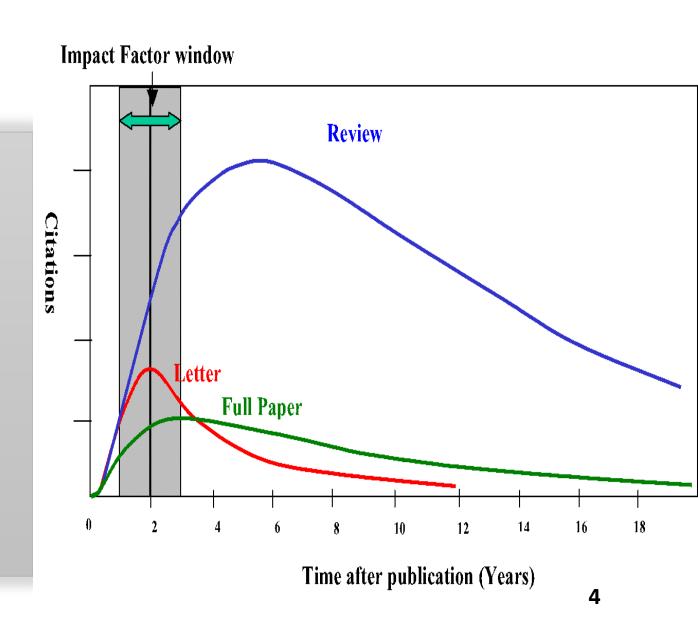
Why is a review paper very popular?

A **scientific review** of a specific topic which provides!

Sufficient and in-depth interpretation and synthesis of published work

Extensive review & critical evaluation of the published literature

A voice that you convey to a scientific community about advanced research



Importance of Review Article

Which type of publication?

- Research articles in peerreviewed journals (preferably with high impact factor)
- >Short communication/Letter
- ➤ Review articles

 (usually highly cited)
- > Conference proceeding

Selecting title of the review

Thesis Research Oriented

Content of article

Area of study

Study design
(Informative and concise)

Neither a question nor a conclusion

Thesis title

Evaluation of Olive Mutants and Transgenic Lines Over-expressing Osmotin Gene for Drought and Salinity Stress Tolerance

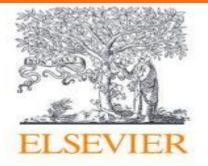
Revier

Osmotin: A Cationic Protein Leads to Improve Biotic and Abiotic Stress Tolerance in Plants

Muhammad Ajmal Bashir ^{1,2}, Cristian Silvestri ^{2,*}, Touqeer Ahmad ¹, Ishfaq Ahmad Hafiz ¹, Nadeem Akhtar Abbasi ¹, Ayesha Manzoor ³, Valerio Cristofori ² and Eddo Rugini ²

Where do I look for resources for my literature review?

Sources & organizations 2 SpringerLink providing publications



- > Academic libraries
- > Public libraries
- > National libraries
- > Archives
- > Special issues
- > Commercial organizations/databases

(SCOPUS, Google scholar & Web of knowledge)

- > Textbooks, Articles, Thesis
- > Government publications
- > Conference papers, Statistics

WEB OF SCIENCE

Contents of a review article

Title

- ➤Between 8 to 12 words
- Helping readers to decide whether they should read the text or not
- ➤ No repetition

List of authors

- Declare intellectual ownership of the work
- >Provide contact information

Abstract

- Emphasis on main objectives and result of the review article
- ➤ Usually 200 to 250 words

Introduction

- ➤ Information about the context
- ➤ Motivation for the review
- Defines the research question
- Explains the text structure
- Between 10% to 20% of the core text

Contents of a review article

Body: Main Part of the Review

- ➤ Methodological approaches
- Extent of support for a given hypothesis
- Studies that agree with one another versus studies that disagree
- > Geographical location
- > 70 to 90% of the core text

Conclusions

- Answer the research question set in the introduction
- > 5% to 10% of the core text

Acknowledgements

Thank those who either helped with the experiments, or made other important contributions, such as discussing the protocol, commenting on the manuscript

References

- Shows interested readers how to find the literature mentioned in the text
- ➤ A range between 50-100 references

ELSEVIER

Contents

Contents lists available at ScienceDirect

Biotechnology Advances

IF: 10.744

journal homepage: www.elsevier.com/locate/biotechadv

Research review paper

Genetic improvement of olive (Olea europaea L.) by conventional and in vitro biotechnology methods

E. Rugini *, V. Cristofori, C. Silvestri

Department of Agricultural and Forestry Science (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy

1.	Introd	duction	586
2.	New a	approaches of cultivation and specific requirements from cultivars and rootstocks	88
3.	Clonal	al selection	89
4.	Induce	red mutations	89
5.	Crossi	ing, hybrid selection and molecular markers	89
6.	Select	tion from programmed hybridization (Gene Pool Method)	90
7.			91
	7.1.	Rapid propagation of new genotypes	91
	7.2.	Pathogen elimination from the mother plants and offspring	91
	7.3.	Immature embryo culture	91
	7.4.	Germplasm preservation	91
		7.4.1. Slow growth preservation	91
			91
	7.5.	Plant regeneration from cell tissues	92
		7.5.1. Shoot organogenesis	92
		7.5.2. Somatic embryogenesis	92
	7.6.	Haploids	92
	7.7.	Triploids and tetraploids	92
	7.8.	Genetic transformation and plant recovery	92
	7.9.		93
	7.10.		93
8.	Concl	flusions and remarks	94
Ref	erences	s 6	04

Importance of figures and diagrams in review paper

- *Reviewers interest
- *Too much text is not attractive

*Figures & schemes

Review

Studies on Colchicine Induced Chromosome Doubling for Enhancement of Quality Traits in Ornamental Plants

Ayesha Manzoor ¹, Touqeer Ahmad ^{2,*}, Muhammad Ajmal Bashir ^{2,3,*}, Ishfaq Ahmad Hafiz ² and Cristian Silvestri ^{3,*}

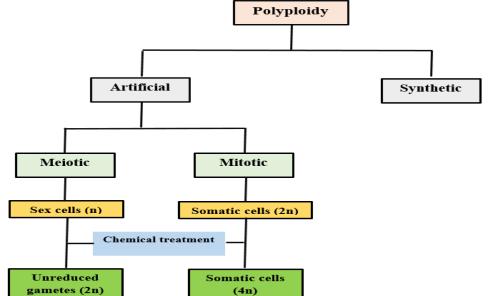
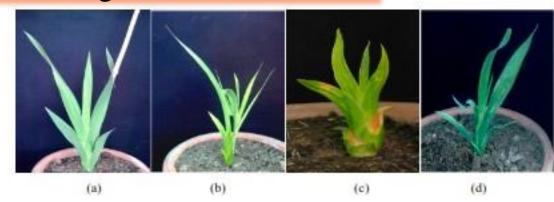
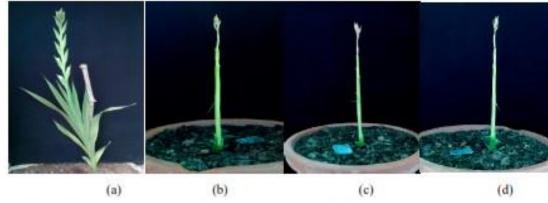




Figure 1. Systematic diagram of polyploidy induction through artificial means

Figure 2. Production of foliar abnormalities in gladiolus cv. White Prosperity at different concentrations of colchicine: normal shaped leaves in control (a) but different abnormal leaves shapes observed in 0.1% (b), 0.2% (c) and 0.3% colchicine (d).

Figure 3. Impact of polyploidy on floral spike formation in gladiolus cv. White Prosperity: Floral spike emerged in control (a) however, in treated plants floral spike formation initiated but it did not elongate at 0.1% (b) 0.2% (c) and 0.3% colchicine concentration (d).

11

Review

Osmotin: A Cationic Protein Leads to Improve Biotic and Abiotic Stress Tolerance in Plants

Muhammad Ajmal Bashir ^{1,2}, Cristian Silvestri ^{2,*}, Touqeer Ahmad ¹, Ishfaq Ahmad Hafiz ¹, Nadeem Akhtar Abbasi ¹, Ayesha Manzoor ³, Valerio Cristofori ² and Eddo Rugini ²

Table 1. Overexpression of OLPs confer stress tolerance in plants.

Crop	OLPs	Overexpression	Reference
Chili (Capsicum sp.)	CaOSM1	Induced resistance to bacterial and fungal pathogens	Hong et al. (2004) [6]
Soybean (Glycine max)	GmOLPa- acidic	Induced in roots and leaves to protect plants from	Onishi et al. (2006) [60]
	isoform	dehydration and salt stress	
Potato (Solanum tuberosum)	OSM	Improved plant resistance to salt stress	Aghaei et al. (2008) [34]
Soybean (Glycine max)	GmOLPa	Developed resistance in plant against salinity and drought	Tachi et al. (2009) [72]
Potato (Solanum tuberosum)	OSM-1	Overexpression induced resistance to late blight disease (<i>Phtyophthora infestans</i>)	EL-Komy et al. (2010) [73]
Sodom apple (Calotropis procera)	CpOSM	Induced in latex and protect plants from bitter rot (Colletotrichum gloeosporioides) and red bread mold (Neurospora sp)	de Freitas et al. (2011) [57]
Black pepper (Piper colubrinum)	PcOSM2	Antifungal activity against wilt disease (<i>Phytophthora</i> capsici) and basal rot (<i>Fusarium oxysporum</i>)	Mani et al. (2012) [74]
Sodom apple (<i>Calotropis</i> procera)	CpOSM	Initiate defense mechanism against root rot (Fusarium solani) spores	Ramos et al. (2015) [75]
Chili (Capsicum sp)	CaOSM1	Confer tolerance to salt stress	Maurya et al. (2015) [76]
Cacao (Theobroma cacao)	TcOsm1	Inhibited growth of yeast and phytopathogenic fungi	Falcao et al. (2016) [66]
Rice (Oryza sativa)	OsOSM1	Induced in leaf sheath at booting stage and overexpression enhance resistance to sheath blight disease	Xue et al. (2016) [77]
Syrian rue (Peganum harmala)	OSM	Induced resistance to salinity	Karam et al. (2016) [78]
Grapes (Vitis vinifera)	VvOSM1	Overexpression improved salinity tolerance	Saleh and Alshehada, (2018) [79]
Sugar beet (Beta vulgaris)	OSM	Overexpressed under PEG induced drought stress	Youssef et al., (2018) [80]
Eucalyptus (E. tereticornis and E. camaldulensis)	OSM34	Protect nursery plants from induced water stress	Amrutha et al. (2019) [81]
Chinese ginseng (Panax notoginseng)	PnoLP1	Involved in defense response against Fusarium solani	Zhao et al., (2020) [82]

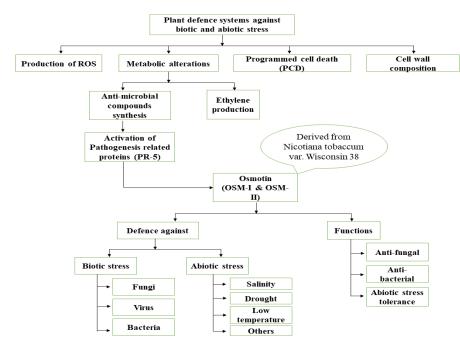
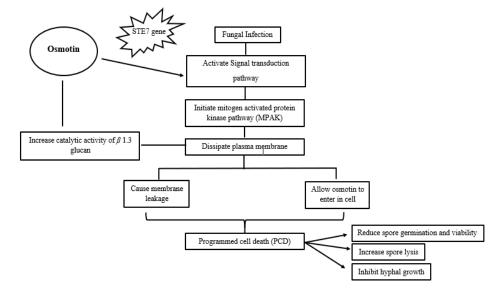
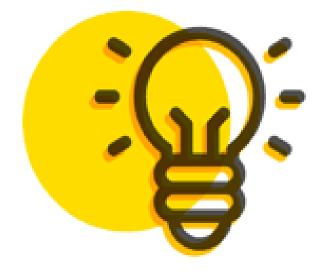



Figure 1. Schematic representation of the role of osmotin in plant defense mechanisms

Figure 2. Schematic diagram representing the osmotin mechanism in inducing tolerance to fungal infections 12


Tips to write a superb literature review

Be **focused** and **avoid** hassle

Have a process and develop your style

Timeliness and figures make a huge difference

Stay updated and be open to suggestions

Make good use of technology

Reference Managers i.e. EndNote; Mendeley; Zotero; Collaborative Writing Tools i.e. Manubot; Latex; Google Docs

Who is the audience of review articles?

- > Experts in specific research areas
- > Students
 - ➤ Want integrated system
 - > Browsing is crucial
 - > Reluctant & jump straight to topic
 - ➤ Want to read less
- > Decision-makers

Before deciding to write a review paper, ask the following questions

Do I know the stuff sufficiently?

Would it be considered at all?

Which journal to publish my review?

First thing first...

Do a thorough literature search

Consult the Journal Editor

Approach to do a literature review!

READ PUBLISHED WORK

Study a wide range of print and web-based materials

INTERPRETATION

Explain the **significance** & interpret the **evidence** presented in each piece of literature; not simply listing what others have written

SYNTHESIS

Creation of an **integrated & Coherent** argument of the topic that you are reviewing

Approach to do a literature review!

It is impossible to read all the research ever published in your area...

The key is...

be selective in what you read —
or else you'll get drown in too
much information!

Selecting the Journals!

- > Select your journal carefully
- Read the aims and scope
- Think about your target audience
- Follow the guidelines
- > Articles should not be submitted to more than one journal at a time

IF: 10.744

Biotechnology Advances 34 (2016) 687-696

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/biotechadv

Research review paper

Genetic improvement of olive (Olea europaea L.) by conventional and in vitro biotechnology methods

E. Rugini *, V. Cristofori, C. Silvestri

Department of Agricultural and Forestry Science (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy

IF: 2.072

IF: 2.762

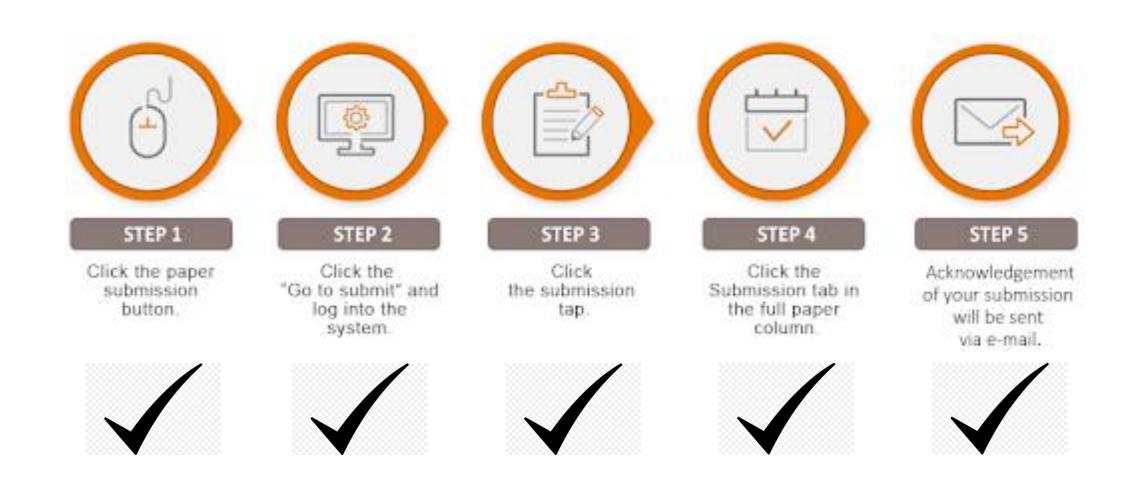
agriculture Osmotin: A Cationic Protein Leads to Improve Biotic and Abiotic Stress Tolerance in Plants

> Muhammad Ajmal Bashir 1,20, Cristian Silvestri 2,*00, Touqeer Ahmad 1, Ishfaq Ahmad Hafiz 1, Nadeem Akhtar Abbasi 1, Ayesha Manzoor 3, Valerio Cristofori 20 and Eddo Rugini 2

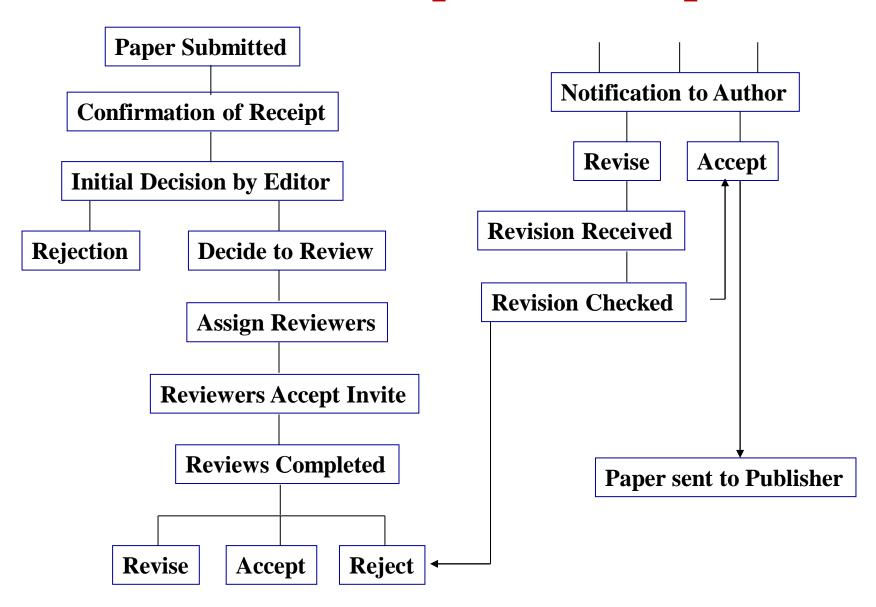
Consulting with the journal editor

Write a convincing cover letter & explain...

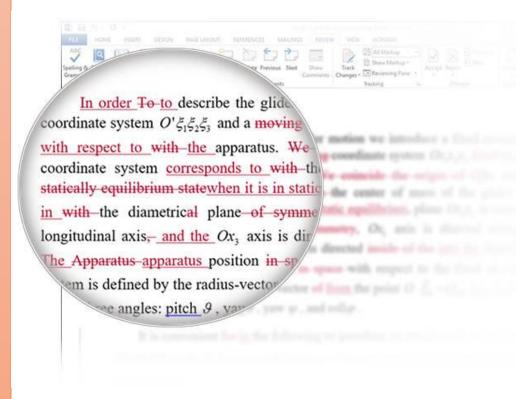
- ➤ Logical basis why you want to write about the topic
- > How you would handle the subject matter
- ➤ Why you are qualified to write on the proposed topic
- > Estimated length (excluding figures & tables)
- **Estimated date** of completion


Article Submission

Proofreading before submission


- Are terms used consistently throughout?
- > Do citations in text match references?
- ➤ Are Syntax and Grammar acceptable?

After submission of paper!


Overview of peer review process

Getting the reviews of your paper

- The reviewer is always right"

 (whether they are or not!)
- ➤ Don't respond quickly
 Digest reviews
- **▶** Balance the Reviewers' suggestions
- >Editor's decision

If your paper was rejected...

➤ Was it sent out for review?

if not, consider changing type of journal

➤ If reviews don't suggest changes send it out quickly to another journal

The 3 journal rule

Contributions in a good review

Authors

Intellectual contribution

Defend the data and conclusions

Professors

Designing the research
Approves the final version

Editors

Initial screening/final decision

Communicates b/w reviewer & author

Reviewers

Indicates drawbacks in manuscript Key role in manuscript improvement

In order To-to describe the glide coordinate system $O'\xi_1\xi_2\xi_3$ and a moving with respect to with the apparatus. We coordinate system corresponds to with the statically equilibrium statewhen it is in static in with the diametrical plane of symmolongitudinal axis, and the Ox_3 axis is directly the Apparatus apparatus position in specific by the radius-vector angles: pitch θ , yar

Conclusion

Research is to see what everybody else has seen, and to think what nobody else else has thought

- Writing a good paper starts with good preparation the pivotal point is identifying the question that is going to form the basis for the research
- A good research paper represents a good researcher researchers should be very careful to prepare their paper

Revieu

Osmotin: A Cationic Protein Leads to Improve Biotic and Abiotic Stress Tolerance in Plants

Muhammad Ajmal Bashir ^{1,2}, Cristian Silvestri ^{2,*}, Touqeer Ahmad ¹, Ishfaq Ahmad Hafiz ¹, Nadeem Akhtar Abbasi ¹, Ayesha Manzoor ³, Valerio Cristofori ² and Eddo Rugini ²

- Department of Horticulture, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan; muhammadajmal@unitus.it (M.A.B.); touqeer@uaar.edu.pk (T.A.); drishfaq@uaar.edu.pk (I.A.H.); nadeem.abbasi@uaar.edu.pk (N.A.A.)
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; valerio75@unitus.it (V.C.); rugini@unitus.it (E.R.)
- Barani Agricultural Research Institute, Chakwal 48800, Pakistan; manzoorayesha12@yahoo.com
- Correspondence: silvestri.c@unitus.it; Tel.: +39-761-357533

Received: 3 July 2020; Accepted: 3 August 2020; Published: 4 August 2020

Pak. J. Agri. Sci., Vol. 57(1),17-42;2020 ISSN (Print) 0552-9034, ISSN (Online) 2076-0906 DOI: 10.21162/PAKJAS/20.8361 http://www.pakjas.com.pk

A REVIEW OF GENETIC IMPROVEMENT OF MAIN FRUIT TREES THROUGH MODERN BIOTECHNOLOGICAL TOOLS AND CONSIDERATIONS OF THE CULTIVATION AND RESEARCH OF THE ENGINEERED PLANT RESTRICTIONS

Eddo Rugini^{1,*}, Muhammad Ajmal Bashir², Valerio Cristofori¹, Bruno Ruggiero¹ and Cristian Silvestri¹

¹Department of Agriculture and Forestry Sciences (DAFNE), Tuscia University, 01100 Viterbo, Italy; ²Department of Horticulture, PMAS Arid Agriculture University, Rawalpindi, Pakistan *Corresponding author's e-mail: rugini@unitus.it

Review

Studies on Colchicine Induced Chromosome Doubling for Enhancement of Quality Traits in Ornamental Plants

Ayesha Manzoor 1, Touqeer Ahmad 2,*, Muhammad Ajmal Bashir 2,3,*, Ishfaq Ahmad Hafiz 2 and Cristian Silvestri 3,*,

- Barani Agricultural Research Institute, Chakwal 48800, Pakistan
- Department of Horticulture, PMAS Arid Agriculture University, Rawalpindi, Punjab 46000, Pakistan
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
- Correspondence: ahmadarid@gmail.com (T.A.); muhammadajmal@unitus.it (M.A.B.); silvestri.c@unitus.it (C.S.); Tel.: +39-761-357533 (M.A.B.)

Received: 13 May 2019; Accepted: 25 June 2019; Published: 28 June 2019

CCAB International 2020 - For the personal use of chapter authors

16 Oleaceae

16.1 Olea europaea Olive

Eddo Rugini,¹ Luciana Baldoni,² Christian Silvestri,¹ Roberta Mariotti,² Isabel Narváez,³ Niccolò Cultrera,² Valerio Cristofori,¹ Muhammad Ajmal Bashir,¹ Soraya Mousavi,² Elena Palomo-Ríos,³ José Angel Mercado³ and Fernando Pliego-Alfaro³

¹Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy; ²CNR – Istituto di Bioscienze e Biorisorse, Perugia, Italy; ³Departamento de Biología Vegetal, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain

References

- Andy T. (2020). How to write a superb literature review. https://doi.org/10.1038/d41586-020-03422-x.
- ➤ Bashir, M. A., Silvestri, C., Ahmad, T., Hafiz, I. A., Abbasi, N. A., Manzoor, A., Cristofori, V. & Rugini, E. (2020). Osmotin: A cationic protein leads to improve biotic and abiotic stress tolerance in plants. Plants, 9(8), 992.
- ➤ Jadav, H. (2015). How to write a review article. https://www.slideshare.net/harshit172/how-to-write-a-review-article-45247380.
- Manzoor, A., Ahmad, A., Bashir, M. A., Hafiz, I.A. & Silvestri, C. (2019). Studies on colchicine induced chromosome doubling for enhancement of quality traits in ornamental plants. Plants. 8 (7), 194.
- ➤ Rugini, E., Cristofori, V., & Silvestri, C. (2016). Genetic improvement of olive (*Olea europaea* L.) by conventional and in vitro biotechnology methods. Biotechnology advances, 34(5), 687-696.
- Rugini, E., Baldoni, L., Silvestri, C., Mariotti, R., Narváez, I., Cultrera, N., Cristofori, V., Bashir, M.A., Mousavi, S., Palomo-Rios, E. & Mercado, J. A. (2020). Olea europaea olive. Biotechnology of fruit and nut crops, (Ed. 2), 343-376.

ACKNOWLEDGEMENTS

Pakistan Research Group

Dr. Touqeer Ahmad

Prof. Ishfaq A. Hafiz

Prof. Nadeem Akhtar Abbasi

PMAS-Arid Agriculture University, Pakistan

Italian Research Group

Prof. Eddo Rugini

Dr. Cristian Silvestri

Prof. Valerio Cristofori

Dr. Samanta Zelasco (CREA-Italy)

Universitá degli studi della Tusia, Italy

