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Field / Farm Scales / Precision Agriculture
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Imran, M, Zurita-Milla, R, Stein, A. (2013). Modeling crop yield in West-African rainfed agriculture using global and local spatial regression. Agronomy Journal:105{4) *

Up-scaling Field Observations / Modeling Spatial Variability

* The solution is to model spatial variability of agricultural variables and use it
in the process of extrapolation.

Z(s) = m(s) + &(s) _ . =

T

% dependent, target variable

n
trend, explanatory part 2(sy) = er(so) - 2(s)
i=1

Imran, M, Zurita-Milla, R, Stein, A. (2013). Modeling crop yield in West-African rainfed agriculture using glonal ana local spatal regression. Agronomy journai:1us14)



/ Weights governing the spatial variation of a variable can be quantified
using the so-called semivariance, this is half the expected squared
\ difference between the values of the variable of interest at two
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= The variogram - y(h) / Ordinary Kriging

/7 = The tool we use to represent and model spatial variation

® The semivariance of Z(s) and Z(s+h) only depends on the distance h and not
on the locations s and s+h.

X " In other words we assume spatial non-stationarity, i.e., mean or trend
3 component is constant

= Plot of semivariance as a function of the distance is called a (semi)-variogram
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. Modeling Uncertainty in Up-scaling Yield Observations

The kriging variance at each point is automatically generated as part
of the process of computing the weights. This kriging variance gives a
measure of prediction error (Uncertainty).
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Imran, M, Zurita-Milla, R, Stein, A. (2013). Modeling crop yield in West-African rainfed agriculture using global and local spatial regression. Agronomy Journal:105(4)

. OK-based Crop Yield Extrapolation

OK prediction error
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- OK-based Prediction of Soil Variables — Field Scale

OK prediction pH

= Measurement of Uncertainty
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= Modeling Spatial Variability / Upscaling Yield Observations

trend);

= deterministic
= empirical - regression modeling

/1 When the variable mean is not constant — it varies spatially
= correlated with location (trend-surface analysis, kriging with a

= varies with class (e.g., land-cover type, soil type);
= varies together with a continuous covariate.

{ UDeterministic or empirical relationship / Trend:

12
Imran, M, Zurita-Milla, R, Stein, A. (2013). Modeling crop yield in West-African rainfed agriculture using global and local spatial regression. Agronomy Journal:105{4)
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} Satellite Data

(a) (b) N

Imran, M., Basit, I, Khan, M.R., Ahmad, S.R.Analyzing the Impact of Spatio-Temporal Climate Variations on the Rice Crop Calendar in Pakistan . Accepted for presentation in at the 20th
International Conference on Sustainable Agriculture Environment & Forestry, Londen, UK. 28-29 June 2011,Londn, UK. 14

“Modeling trend with deterministic methods
’ Multiple Linear Regression Kriging (MLRK)

Y(s) = f(NDVI.PC(s), PERC(s), ELEV (s), RURP(s), PHCR(s), MARK (s))
+H(s),

2(sg) = m(so) + &(so)

P n
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Yrk(s) = xo(5)" Pruzr(s) + Hok (s),

Imran, M, Zurita-Milla, R, Stein, A. (2013). Modeling crop yield in West-African rainfed agriculture using global and local spatial regression. Agronomy Journal:105(4)



MLRK-based Crop Yield Extrapolation

MLRK prediction MLRK prediction error

Cropyields (kgha™)

_jsl:l:]:_ BN T [ [ [

S SR 2P o A

P RN & g®
S i

16

Modeling Spatial Variability — Geostatistical Approaches

= Geostatistical approaches include the distance between two
observations for the quantification of spatial variability.

=" These methods however do not consider spatial variations with
respect to the geographical coordinates.
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Y(s) = f(NDVI.PC(s), PERC(s), ELEV (s), RURP(s), PHCR(s), MARK (s))
+ H(s),

Y(s) = Bo+> BXils)+es,
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GWR Crop Yield Extrapolation

GWR prediction A GWR prediction error




= Concluding remarks

/ wSpatial statistical tools help to model spatial variability of variables.

=Geostatistical approaches uses the quantified spatial variability to extrapolate
« variables from field to regional scales.

1) "Remote sensing imagery can be used to assist in scaling-up and scaling-down
spatial information.




