DIRECTORATE OF ADVANCED STUDIES EVENT CATALOGUE 2021

32ND SEMINAR OF DAS EVENTS CALENDAR – 2021

USE OF PGPR FOR THE MANAGEMENT OF PLANT DISEASES

32nd Seminar (through ZOOM) of DAS Events Calendar

USE OF PGPR FOR THE MANAGEMENT OF PLANT DISEASES

Presenter: Prof. Dr. M. Inam ul Haq Professor, Department of Plant Pathology

Dated: Thursday, January 06, 2022 Time: 02:00 p.m. - PKT GMT+5

ZOOM Meeting ID: 955 408 3170 - Passcode: 67890

Organized By: Directorate of Advance Studies, PMAS-AAUR

ACTIVITIES

PLANT GROWTH PROMOTING RHIZOBACTERIA

 Rhizobacteria colonizing the root surfaces and closely adhering soil interface, the rhizosphere (Kloepper, 1980).

Mechanisms of PGPR

- Increased mineral nutrient solubilization and nitrogen fixation (Glick et al., 1995)
- Repression of soil-borne pathogens (Glick et al., 1995)
- · Improving plant stress tolerance to drought, salinity, and metal toxicity
- o Production of phytohormones (Hu et al., 2005)
- o Induction of systemic resistance (Huang et al., 2009)

PGPR
Biocontrol

Biocontrol

Rhizosphere

Antibiosis

Lytic enzyme production

ISR

Increased plant growth

2

OVERVIEW OF DISEASES AND PGPR

- Pseudomonas fluorescens controls downy mildew caused by Sclerospora graminicola
- Bacillus spp. can control bacterial leaf blight of rice caused by Xanthomonas oryzae
- Pseudomonas and Bacillus species are used as biological control agents against pests and plant diseases of potato and sugarbeet

Product	PGPR species	Target Crops
Nodulator	Bradyrhizobium japonicum	legumes
Diegall/Galltroll	Agrobacterium radiobacter	Fruits, nut, ornamentals,
Pixplus	Bacillus cereus	Cotton
Ballard	Bacillus pumilus	Oat trees, nurseries and landscapes
Epic, Kodiak, Subtilex	Bacillus subtilis	Peanut, beans, rice, pea, soyabean, barley
Blue circle, Intercept	Burkholderia cepacia	Alfalfa, barley, beans, cotton, maize, pea, sorghum
Bioject, Spotless	Pseudomonas auerofaciens	Turf and other crops
AtEze	Pseudomonas chloroaphis	Ornamentals and vegetable
Blight Ban, Conquer	Pseudomonas fluorescens	Almond, Cherry, potato

RESEARCH CONDUCTED SO FAR IN OUR LAB

RESEARCH STUDENTS

Number of students have completed doctoral studies under my supervision

	I P					
Sr. No.	Name	Title	Year			
1	Dr. M. Ibrahim Tahir	Induction of resistance against bacterial wilt in potato	2016			
2	Dr. Muhammad Raees	Surveillance and characterization of bacterial canker of Stone Fruits Using Biochemical and Molecular Methods	2018			
3	Dr. Sajjad Hyder	Bio-pesticide development for the control of <i>Pythium</i> and <i>Phytophthora</i> spp. causing damping off disease in tomato and chilli	2019			
4	Dr. M. Shah Jahan	Evaluation of biochar as a carrier material of antagonistic rhizobacteria for the management of root pathogenic fungi of chickpea	2019			
5	Dr. Shazia Shahzaman	Chickpea root disease management using antagonistic rhizobacteria	2016			
6	Dr. Shagufta Bibi	Screening and characterization of Rhizobacteria antagonistic to <i>Pseudomonas syringae</i> affecting stone fruits in Punjab and KPK	2019			
7	Dr. Javaid A Tariq	Utilization of Plant Growth Promoting Rhizobacteria for the management of Rot Knot Nematode in Tomato	2008			
8	Mphil Students	70 Students worked in different aspects of PGPR				

OUTCOMES OF THE STUDIES

- Number of antagonists are available that have proven efficiency against several important pathogens
- Ralstonia solanacearum (bacterial wilt of potato and tomato)
- Pseudomonas syringae
- Chickpea root fungal pathogens i.e. Fusarium, Verticillium
- Pythium spp. in chilli
- Phytophthora spp. in chilli
- Viral Pathogens
- Nematode Pathogens

INDUCTION OF RESISTANCE AGAINST BACTERIAL WILT IN POTATO (Solanum tuberosum L.)

Muhammad Ibrahim Tahir

Ph D. Plant Pathology

OBJECTIVES

- Screening of antagonistic rhizobacteria against *R. solanacearum* and their evaluation in *In vitro* and in greenhouse
- Quantification of defense related enzymes at different intervals
- Analysis of salicylic and jasmonic acid responsive genes expression by RT-PCR for monitoring induction of systemic resistance in PGPR treated plants

10

RESULTS

SURVEY

District	Disease Incidence (%)	Disease Prevalence (%)	Severity Scale
Okara	21.4 ± 4.5	100	2-4
Sahiwal	19.66 ± 5.7	100	2-3
Sialkot	16.8 ± 3.9	100	2–3
Jhang	17.4 ± 2.2	100	1-3
Kasur	16.5 ± 5.8	100	1-3
Pakpattan	17.8 ± 4.6	100	2-4

PATHOGENICITY TEST OF R. solanacearum

Isolates	Virulence
Rs1	+
Rs2	-
Rs3	++
Rs4	-
Rs5	_
Rs6	++
Rs7	++
Rs8	++
Rs9	+++
Rs10	++
Rs11	-
Rs12	-
Rs13	-

Isolates	Virulence
Rs14	-
Rs15	+
Rs16	-
Rs17	+++
Rs18	++
Rs19	_
Rs20	+
Rs21	_
Rs22	-
Rs23	-
Rs24	++
Rs25	++
Rs26	-

PATHOGENICITY TEST OF R. solanacearum

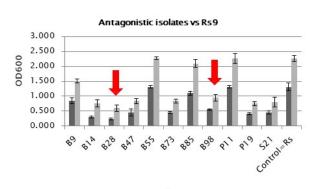
Isolates	Virulence
Rs27	+
Rs28	++
Rs29	-
Rs30	-
Rs31	-
Rs32	-
Rs33	_
Rs34	+
Rs35	+

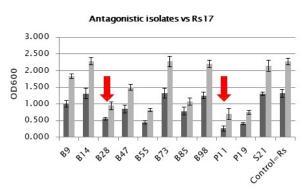
Isolates	Virulence
Rs36	+
Rs37	++
Rs38	_
Rs39	-
Rs40	-
Rs41	++
Rs42	-
Rs43	+++

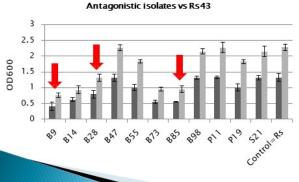
14

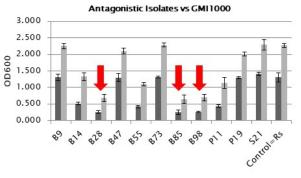
ISOLATION OF RHIZOBACTERIA

Areas	Bacillus sp. isolates	Pseudomonas isolates	Serratia isolates	Total
Okara	28	11	4	43
Sahiwal	15	21	6	42
Sialkot	11	13	4	28
Jhang	19	8	12	39
Kasur	21	9	8	38
Pakpattan	7	14	10	31
Total	101	76	44	221


Screening of Rhizobacteria Against R. solanacearum

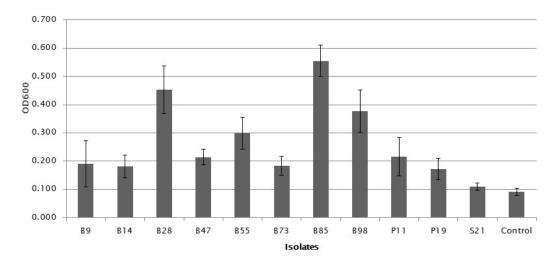

 Rhizobacterial isolates having zone of inhibition greater than 8 mm against either of R. solanacearum isolates


Isolates	Zone of inhibition (mm)				
isolates	Rs9	Rs17	Rs43	GMI 1000	
B9	$3.4 \pm 2.4 e$	2.5 ± 1 e	$9.9 \pm 3.2 a$	0 e	
B14	10.6 ± 1.5 b	0 f	$8.5 \pm 3.0 \text{ ab}$	$4.8 \pm 1.5 \text{ cd}$	
B28	12.3 ± 2.3 a	7.3 ± 2.2 c	4.6 ± 2.4 c	10.6 ± 2.2 ab	
B47	8.5 ± 1.2 c	3.7 ± 2.7 de	0 e	0 e	
B55	0 e	9.1 ± 2.3 ab	$2.8\pm1.2~d$	$6.4 \pm 2.2 c$	
B73	$9.6 \pm 3.0 \text{ bc}$	0 f	$7.8 \pm 1.9 \text{ b}$	0 e	
B85	0 e	$4.5 \pm 2.2 d$	8.3 ± 1.9 b	11.7 ± 3.3 a	
B98	$7.9 \pm 2.8 d$	0 f	0 e	10.3 ± 4.1 ab	
P11	0 e	10.2 ± 2.8 a	0 e	5.6 ± 3.4 c	
P19	9.8 ± 1.9 bc	9.5 ± 1.8 ab	$2.5 \pm 1.0 d$	0 e	
521	$8.8 \pm 2.8 c$	0 f	0 e	0 e	
Control	0 e	0 f	0 e	0 e	


16

Comparison of culture filtrate on R. solanacearum isolates growth

PLANT GROWTH PROMOTING TRAITS OF ANTAGONISTS


Isolates	*Siderophore production	P– solubilization	IAA production (µg/ml)	**Ammonia production	HCN Production	Chitinase production
В9	++	-	4 ± 0.41	+	-	-
B14	-	-	4.50 ± 0.45	+	-	-
B28	+++	+	50 ± 3.5	+	-	+
B47	+	-	4 ± 0.29	+	-	-
B55	_	_	12 ± 1.0	_	-	+
B73	-	-	3.3 ± 1.1	+	-	+
B85	++	+	20 ± 0.24	+	-	+
B98	++		5.5 ± 0.21	+	-	+
P11	+	-	3.8 ± 1.5	-	-	-
P19	+	_	8.5 ± 2.8	+	-	20
521	+	-	0	-	-	+
Control	-	_	0	-	-	-

^{*} Strong (\geq 5mm halozone represented as '+++'), weak (2-5 mm represented as '++'), slight (1-2mm represented as '+') and non-siderophore producers as '-'

18

PLANT GROWTH PROMOTING TRAITS OF ANTAGONISTS

Biofilm formation ability

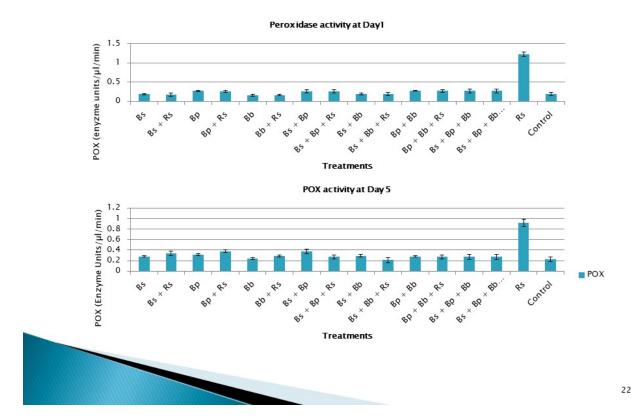
^{**} Ammonia production present '+', absent '-'

PLANT GROWTH PROMOTING TRAITS OF ANTAGONISTS

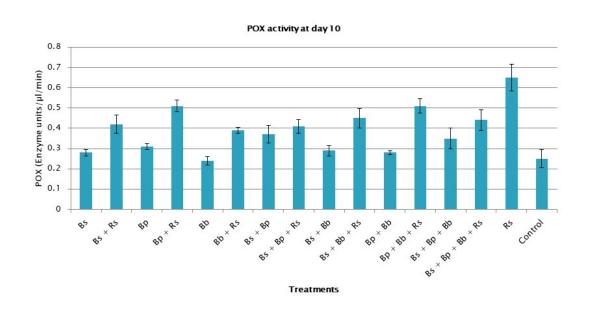
Root colonizing ability

B85

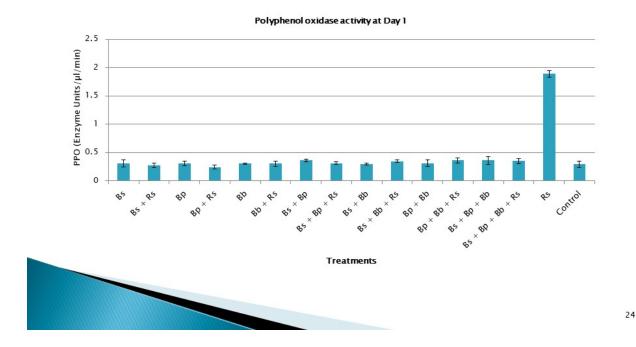
B28


B98

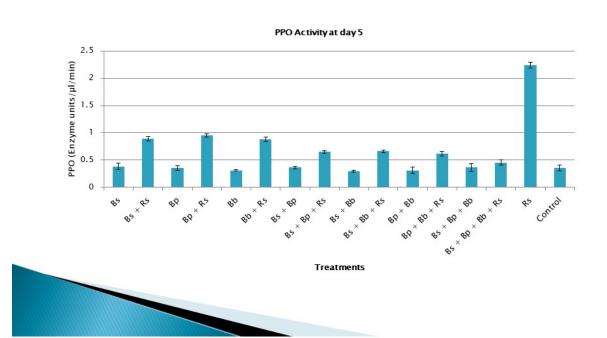
Isolates	Root Colonizing ability	Cfu/ml
В9	-	4
B14	_	6
B28	++	23
B47	-	4
B55	+	11
B73	_	5
B85	+++	31
B98	+	17
P11	+	8
P19	-	6
521	-	3
Control	_	0

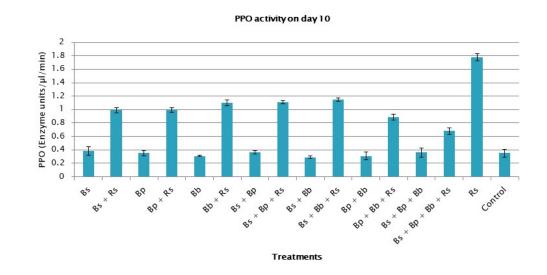

20

GREENHOUSE EVALUATION OF PGPR

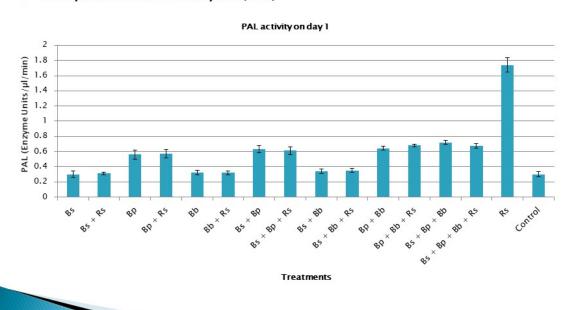

Treatments	Disease Incidence (%)	Shoot height (cm)	Shoot fresh weight (g)	Shoot dry weight (g)
Bs	0 f	27.33 ab	16.52 ab	2.54 ab
Bs + Rs	16.4 c	26.10 bcd	15.65 bc	2.45 b
Вр	0 f	25.45 cde	15.39 bc	2.25 d
Bp + Rs	14.80 d	25.41 cde	15.48 bc	2.21 d
Bb	0 f	25.13 bcd	15.61 bc	2.23 d
Bb + Rs	18 b	24.85 bcd	15.60 bc	2.24 d
Bs + Bp	0 f	28.12 abc	15.61 bc	2.43 b
Bs + Bp + Rs	11.40 e	27.45 bcd	15.35 bc	2.41 b
Bs + Bb	0 f	27.33 bcd	15.21 bc	2.46 b
Bs + Bb + Rs	14.40 d	26.25 ab	15.61 bc	2.47 b
Bp + Bb	0 f	27.66 bcd	15.62 bc	2.20 d
Bp + Bb + Rs	13.80 d	26.60 bcd	15.64 bc	2.24 cd
Bs + Bp + Bb	0 f	29.11 a	17.38 a	2.67 a
Bs + Bp + Bb + Rs	9.60 e	27.20 ab	16.50 ab	2.54 ab
Rs	51 a	17.33 f	7.98 d	1.14 e
Control	0 f	23.33 e	15.26 c	2.18 d

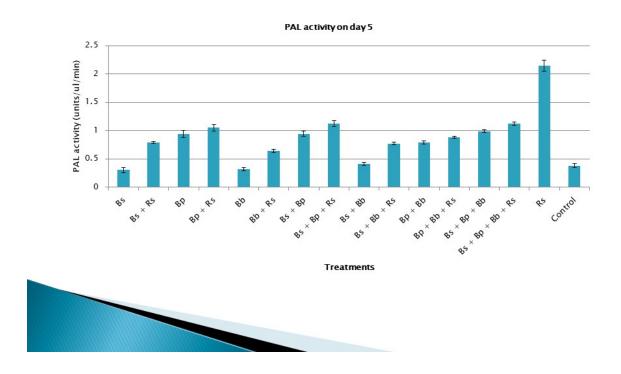
QUANTIFICATION OF DEFENSE ENZYMES

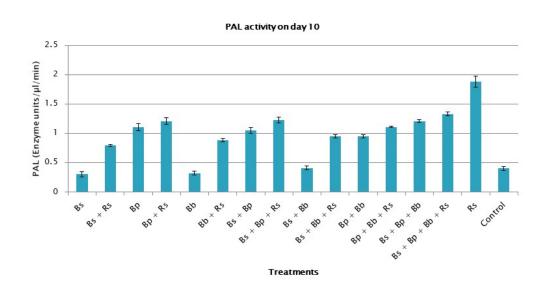



Polyphenol oxidase (PPO)

QUANTIFICATION OF DEFENSE ENZYMES


Polyphenol oxidase (PPO)




QUANTIFICATION OF DEFENSE ENZYMES

Phenylalanine ammonia lyase (PAL)

QUANTIFICATION OF DEFENSE ENZYMES

SUMMARY

- Highest disease incidence was found at Okara and Sahiwal (21 and 20% respectively) with severity scale ranging from 2-4
- From 221 rhizobacterial isolates, 11 isolates were found antagonistic against *R. solanacearum* among which Bacillus isolates were more effective
- Induced resistance by *B. subtilis* subsp. *inaquosorum* B28 and *B. pumilus* B85 have activated plant defense mechanism and it has reduced the disease incidence to as low as 9% as compared to control (51%).
- In combined application (Bs + Bp + Bb), PGPR are more effective as individual characters of each isolate have contributed towards better plant growth environment.

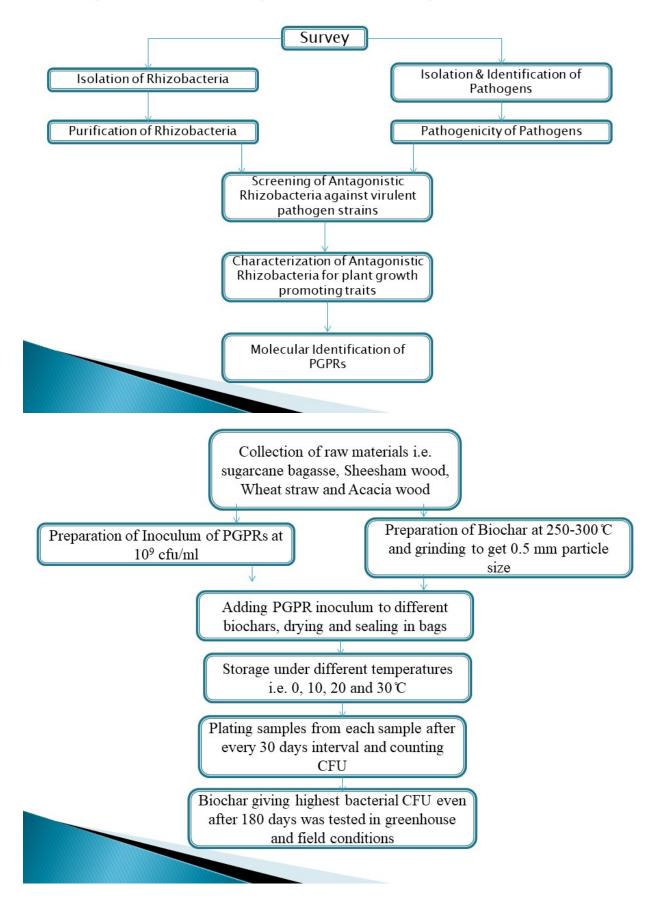
36

Evaluation of Biocharas a Carrier Material of Antagonistic Rhizobacteria for the Management of Root Pathogenic Fungi of Chickpea

Muhammad Shahjahan PhD Scholar- Plant Pathology 12-Arid-480

What is Biochar?

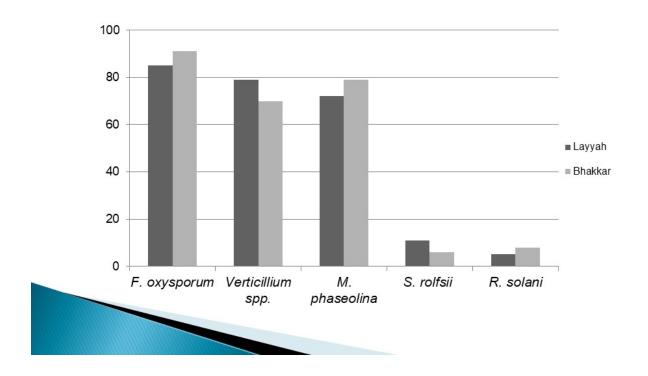
Biochar is the porous carbonaceous solid produced by thermochemical conversion of organic materials in an oxygen depleted atmosphere (Shackley & Sohi, 2010).


- High stability (structure changes)
- Highly absorbent (retain nutrients, chemicals)
 (Liang et al., 2006)

OBJECTIVES

- Determine the current status of fungal root diseases of chickpea in Layyah and Bhakkar districts of Punjab.
- Isolate and screen the antagonistic rhizobacteria inhibiting chickpea root fungal pathogens
- Evaluation of different biochar as a carrier of antagonistic rhizobacteria for its shelf life
- Assessing the efficacy of biochar with and without antagonistic rhizobacteria against root pathogenic fungi of chickpea under greenhouse conditions.

Layout of Study 1 and study 2



Survey Results

D: 4 : 4			2013-14			2014-15		Mean D
District	Areas	DI (%)	DP (%)	DS range	DI (%)	DP (%)	DS range	(%)
	Sahoo wala	56	100	1-4	48	100	1-4	
	Shah wala	58	100	2-4	54	100	2-4	
	Turkey wala	70	100	2-4	62	100	2-4	
	Sobay wal	66	100	2-4	70	100	2-3	
	Asar wala	72	100	2-4	76	100	2-4	
	Bhular wal	58	100	1-3	52	100	1-4	
	Bhalia wala	56	100	2-4	58	100	2-4	
	Sheiro wal	62	100	2-4	66	100	2-4	
	Yasin wal	70	100	2-4	68	100	2-4	
_	Janay wal	54	100	1-4	62	100	1-4	
Layyah	Mochi wala	60	100	1-4	56	100	1-4	
ay	Shumar wala	62	100	2-4	54	100	2-4	60.05±6.
_	Asar gillani wala	54	100	2-3	52	100	2-4	
	Okmay wala	56	100	2-3	54	100	2-3	
	Mochi moor	52	100	2-4	56	100	2-4	
	Lunger wala	56	100	2-4	62	100	2-3	
	Dera nawab sewag	70	100	1-4	60	100	1-3	
	Shumar moor	68	100	2-4	56	100	2-4	
	Darbar mai wleet	68	100	2-4	52	100	2-4	
	Manjhi wala	60	100	1-4	56	100	1-4	
	Mean	61.4±6.43	100		58.7±7.06	100		

			2013-14			2014-15		Mean DI
Dist	rict Areas	DI (%)	DP (%)	DS range	DI (%)	DP (%)	DS range	(%)
	Tehsil Mankeraa	48	100	1-4	54	100	1-4	
	Mani	56	100	1-4	52	100	1-4	
	Kuriya	62	100	1-4	56	100	1-4	
	Lungha wala	56	100	2-4	62	100	2-4	
	Kiri wala	56	100	2-3	50	100	2-3	
	Pati blinda	68	100	1-4	64	100	1-4	
	Dagar shada	76	100	2-4	70	100	2-4	
	Wig sadar	50	100	2-4	48	100	2-4	
=	Khanser	52	100	2-3	50	100	2-4	
Shakkar	Dullewala	56	100	1-3	62	100	1-3	
2	Jundan wala	58	100	1-4	60	100	1-4	57.5±6.7
2	Magasi wala	66	100	2-4	62	100	2-4	57.5±0.7
	Thal Hayder abad	62	100	2-3	64	100	2-4	
	Tehsil deria khan	54	100	2-4	52	100	2-4	
	Maibal sharif	56	100	2-4	50	100	2-4	
	Tesil kaloor koot	64	100	2-4	56	100	2-4	
	Chandni chowk	66	100	1-3	54	100	1-3	
	Bhatti wala	56	100	2-4	50	100	2-3	
	Panj Girain	48	100	2-3	50	100	2-4	
	Mian Punja	60	100	1-4	64	100	1-4	
	Mean	58.5±7.10	100		56.5±6.45	100		

Frequency of chickpea root fungal pathogens from samples collected from Layyah and Bhakkar

Pathogenicity Tests Results

Fungal pathogen	Total isolates	Highly pathogenic	Slightly pathogenic	Non- pathogenic
F. oxysporum	72	12	45	15
Verticillium spp.	34	7	21	6
M. phaseolina	33	5	18	10
S. rolfsii	10	0	8	2
R. solani	6	0	6	0
Total	155	24	98	33

Evaluation of Rhizobacteria for Antagonism

		Zo	ne of inhibition (r	mm)	
Isolate/Pathogen	F. oxysporum	F. solani	S. rolfsii	Verticillium spp.	M. phaseolina
Rh-3	5±1e	0±0d	8±2.5bc	3±1.1c	5±1.5c
Rh-7	10±1.5cd	0±0d	10±2.5b	9±3.3b	0±0e
Rh-8	19±1.7a	11±4.5a	6±1.8c	8±2.5b	9±2.5a
Rh-24	0±0f	0±0d	9±3.3b	0±0d	8±3.7a
Rh-30	0±0f	9±3.3ab	0±0e	5±1.5c	0±0e
Rh-31	8±2d	7±2.7bc	10±2.5	8±2.2b	0±0e
Rh-32	4±1.2e	10±1.8a	7±1.2c	0±0d	0±0e
Rh-33	12±3.5c	6±2.2c	13±5.0a	17±2.5a	6±1.7bc
Rh-43	9±2.3d	4±2.0c	0±0e	4±1.5c	0±0e
Rh-49	8±2.5d	9±3.5ab	0±0e	0±0d	7±3.3b
Rh-55	16±3.3b	8±2.3b	8±1.5bc	15±4.8a	6±2.2bc
Rh-56	0±0f	8±3.5b	11±2.8ab	3±0.8c	5±1.3c
Rh-77	8±1.9d	6±2.2c	4±1.2d	0±0d	4±1.2cd
Control	0±0f	0±0d	0±0e	0±0d	0±0e

PGP Traits of Rhizobacteria

Isolates	IAA production	P- solubilization	Siderophore production	Chitinase production	Biofilm formation
Rh-3	+	_	_	+	_
Rh-7	+	-	+	+	+
Rh-8	+	-	++	++	+
Rh-24	+	_	+	_	_
Rh-30	+	+	+	-	-
Rh-31	_	+	<u></u>	+	_
Rh-32	-	_	+	-	+
Rh-33	+	-	+	++	_
Rh-43	+	+	+	-	+
Rh-49	+	-	++	-	-
Rh-55	+	+	+	++	+
Rh-56	+	-	+	+	+
Rh-77	+	-	-	+	+
Control	-	-	-	-	-

Preparation of Biochar and its evaluation

- Wheat straw, sheesham wood, Sugar cane bagasse and Acacia wood were used for biochar production
- ▶ Heating in conventional pyrolysis tank at 250-350°C (Pan et al., 2011)
- After preparation, the pyrolyzed product was ground to fine form (0.5 mm)

Evaluation

- Antagonistic PGPRs suspension was prepared at 109 cfu/ml
- > 30 ml inoculum was shaken at 25 °C for 24 h with 10 g of carrier materials in flasks followed by aseptically drying of carrier materials and storage under different temperatures i.e. 0, 10, 20 and 30 C.
- Samples were taken every 30 day interval i.e 0, 30, 60, 90, 120, 150 and 180 days and cfu/g was calculated by plating.

Shelf life of P. illinoisensis Rh-8 on different carrier materials

				Bacterial po	pulation (le	gCFU/g car	rier materi	al)	
Temperature	Carrier material	Days after inoculation (DAI)							Mean
3.331.331.331.331.333		0	30	60	90	120	150	180	меап
	Bagasse biochar	9.70	9.17	9.03	8.36	8.11	7.56	7.31	8.46i
	WS biochar	9.69	9.04	8.92	8.15	7.03	6.12	5.55	7.78k
0°C	Sheesham biochar	9.70	9.18	8.95	8.47	7.78	7.00	6.53	8.23j
	AW biochar	9.69	9.09	8.77	8.26	7.84	7.05	6.68	8.19jk
	Peat	9.70	9.19	9.04	8.49	7.49	7.03	6.41	8.23j
	Lignite	9.68	9.07	8.85	8.23	7.23	6.91	6.46	8.13jk
	Bagasse biochar	9.70	9.83	10.14	10.31	10.73	11.19	10.92	10.40a
	WS biochar	9.68	9.75	9.92	9.68	9.08	8.49	8.05	9.24g
10 °C	Sheesham biochar	9.70	9.85	10.07	10.26	10.31	9.95	9.81	9.99cd
	AW biochar	9.69	9.77	9.94	10.13	9.94	9.83	9.61	9.84d
	Peat	9.71	9.80	10.14	10.32	10.57	10.03	9.95	10.07c
	Lignite	9.70	9.66	9.94	10.17	9.78	9.23	8.75	9.60fg
	Bagasse biochar	9.71	10.03	11.26	11.34	10.57	9.74	9.14	10.26b
	WS biochar	9.68	9.94	10.15	10.65	10.08	9.28	8.64	9.77e
20 °C	Sheesham biochar	9.70	9.95	10.27	10.86	10.41	9.65	9.01	9.98cd
	AW biochar	9.69	9.77	9.94	10.13	9.94	9.83	8.89	9.74e
	Peat	9.70	10.13	11.35	10.87	9.61	9.03	8.53	9.89d
	Lignite	9.70	9.91	10.70	10.07	9.47	8.99	8.27	9.59fg
	Bagasse biochar	9.70	11.52	11.07	9.77	9.02	8.44	7.99	9.64fg
	WS biochar	9.68	10.83	10.64	9.32	8.87	8.19	7.35	9.27g
30 °C	Sheesham biochar	9.70	9.85	10.07	10.26	10.31	9.95	9.81	9.99cd
	AW biochar	9.69	10.25	9.94	10.13	9.94	9.83	9.61	9.91d
	Peat	9.68	11.36	11.07	8.30	7.96	7.35	7.06	8.97h
	Lianita	0.50	11.04	10.00	0.10	7.00	7.20	C 00	0.016:

Shelf life of B. subtilis Rh-33 on different carrier materials

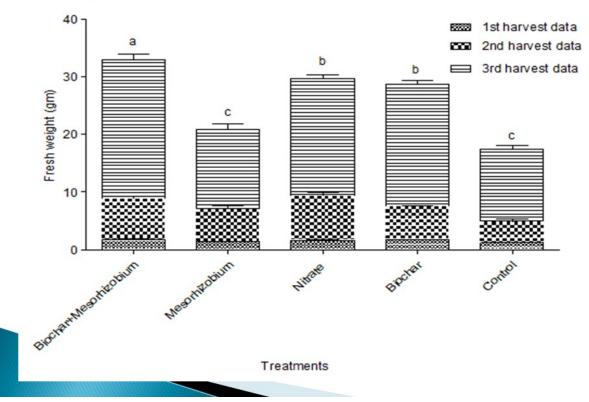
		Bacterial population (lg CFU/g carrier material)							
Temperature	Carrier material			,	er inoculati				Mean
		0	30	60	90	120	150	180	Mean
	Bagasse biochar	9.70	9.00	8.63	8.21	7.88	7.34	7.01	8.25f
	WS biochar	9.69	8.95	8.32	7.89	7.03	6.12	5.35	7.62h
0 °C	Sheesham biochar	9.70	9.00	8.70	8.22	7.78	7.15	6.75	8.19f
U C	AW biochar	9.69	9.09	8.77	8.26	7.84	7.05	6.48	8.17f
	Peat	9.70	9.10	8.75	8.23	7.81	7.18	6.75	8.22f
	Lignite	9.68	9.07	8.85	8.23	7.23	6.91	6.46	8.06g
	Bagasse biochar	9.70	9.23	9.45	9.94	10.19	10.53	10.01	9.86a
	WS biochar	9.68	8.75	8.62	8.12	7.58	7.11	6.25	8.02
10 °C	Sheesham biochar	9.70	9.11	9.35	9.81	10.08	10.29	9.61	9.71b
17.7	AW biochar	9.70	8.99	9.14	8.63	8.12	8.00	7.61	8.60e
	Peat	9.68	9.25	9.48	9.99	10.08	10.31	9.83	9.80ab
	Lignite	9.68	9.25	9.48	9.99	10.08	10.31	9.83	9.80ab
	Bagasse biochar	9.71	9.89	10.25	10.61	10.08	9.75	9.33	9.95a
	WS biochar	9.66	9.85	10.05	10.21	10.02	9.11	8.47	9.62bc
20 °C	Sheesham biochar	9.70	9.85	10.27	10.59	10.01	9.58	9.13	9.88a
	AW biochar	9.69	9.77	9.94	10.13	9.94	9.83	8.89	9.74b
	Peat	9.70	9.87	10.32	10.63	10.00	9.55	9.10	9.88a
	Lignite	9.70	9.72	10.27	10.54	9.95	9.47	9.04	9.81ab
	Bagasse biochar	9.71	10.21	10.25	9.61	8.98	8.52	8.21	9.36c
	WS biochar	9.72	10.15	10.23	9.52	8.78	8.35	8.00	9.25cd
30 °C	Sheesham biochar	9.70	10.15	10.27	9.59	9.01	8.44	8.08	9.32c
	AW biochar	9.69	10.21	10.08	9.44	8.64	8.28	7.93	9.18d
	Peat	9.70	10.17	10.27	9.59	9.01	8.47	8.08	9.33c
	Lignite	9.69	10.21	10.08	9.44	8.64	8.28	7.93	9.18d

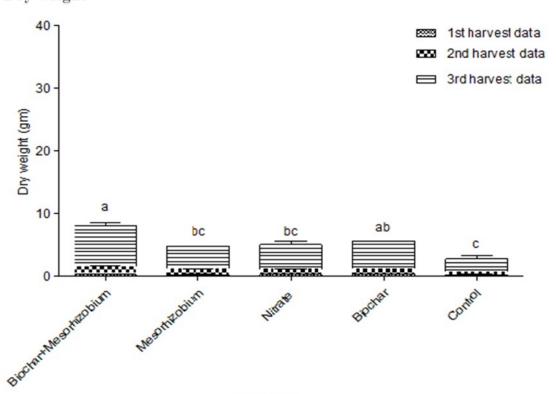
Shelf life of P. psychrotolerans Rh-55 on different carrier materials

		Bacterial population (Ig CFU/g carrier material)							
Temperature	Carrier material			Days aft	er inoculati	ion (DAI)			Mean
		0	30	60	90	120	150	180	Mean
	Bagasse biochar	9.70	9.15	9.08	8.39	8.21	7.61	7.29	8.46i
	WS biochar	9.69	9.04	8.92	8.15	7.03	6.12	5.55	7.78k
0 °C	Sheesham biochar	9.70	9.18	8.95	8.47	7.78	7.00	6.53	8.23j
	AW biochar	9.69	9.13	8.81	8.26	7.94	7.05	6.78	8.19jk
	Peat	9.70	9.19	9.04	8.49	7.49	7.03	6.41	8.23j
	Lignite	9.72	9.09	8.89	8.23	7.23	6.95	6.46	8.13jk
	Bagasse biochar	9.70	9.63	10.10	10.27	10.65	11.11	10.93	10.50a
	WS biochar	9.68	9.78	9.92	9.64	9.18	8.41	8.05	9.24g
10 °C	Sheesham biochar	9.70	9.85	10.07	10.26	10.31	9.95	9.81	9.99cd
	AW biochar	9.69	9.79	9.94	10.14	9.94	9.85	9.61	9.84d
	Peat	9.71	9.81	10.14	10.25	10.57	10.05	9.95	10.07c
	Lignite	9.70	9.64	9.94	10.17	9.73	9.23	8.78	9.60fg
	Bagasse biochar	9.71	10.03	11.26	11.34	10.55	9.74	9.14	10.13b
	WS biochar	9.68	9.94	10.15	10.65	10.08	9.28	8.64	9.71e
20 °C	Sheesham biochar	9.70	9.98	10.29	10.86	10.41	9.61	9.01	9.88cd
	AW biochar	9.69	9.77	9.94	10.18	9.94	9.83	8.89	9.69e
	Peat	9.73	10.13	11.31	10.87	9.63	9.03	8.53	9.89d
	Lignite	9.70	9.91	10.70	10.07	9.44	8.94	8.27	9.62fg
3	Bagasse biochar	9.70	11.50	11.07	9.73	9.02	8.41	7.99	9.60fg
	WS biochar	9.68	10.84	10.64	9.32	8.87	8.19	7.35	9.17g
30 °C	Sheesham biochar	9.70	9.84	10.07	10.26	10.33	9.95	9.81	9.28cd
	AW biochar	9.69	10.25	9.93	10.13	9.94	9.87	9.61	9.51d
	Peat	9.68	11.36	11.07	8.30	7.96	7.35	7.06	8.94h
	Lignite	9.67	11.04	10.80	8.02	7.89	7.27	6.89	8.76hi

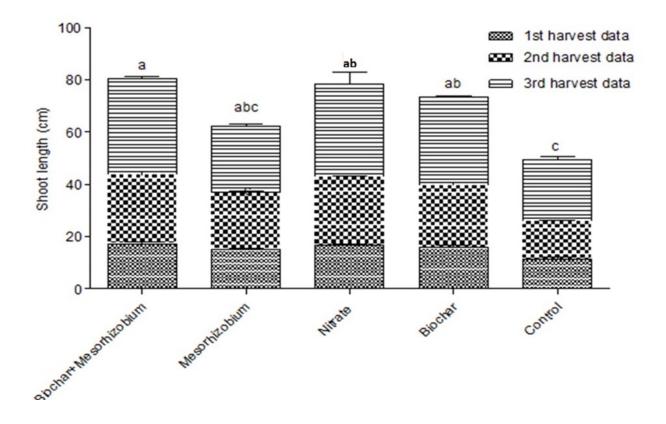
Greenhouse Evaluation of biochar

Treatment	DI (%)	RL (cm)	RFW (g)	RDW (g)
Bagasse biochar	0i	33.25bc	8.42a	1.28a
Bagasse biochar + Rh-8	0i	38.6a	8.6a	1.30a
		20.50	7 70 1	1 00 1
Bagasse biochar + Rh-8 + F.	25f	29.50cd	7.78ab	1.22abc
oxysporum				
Bagasse biochar + Rh-8 +	10h	31.30c	7.81ab	1.25ab
Verticillium				
Bagasse biochar + Rh-8 + M.	20g	35.3b	7.4bc	1.13bc
phaseolina				
Bagasse biochar + F. oxysporum	67b	25.65d	6.4cd	1.00cd
Bagasse biochar + Verticillium	37d	25.00d	6.9c	1.04cd
Pagassa biasbas I M. phasaalina	F0-	24 704	6.14	1.00-4
Bagasse biochar + M. phaseolina	50c	24.70de	6.1d	1.00cd
Rh-8	0i	35.2b	7.9ab	1.21abc
Rh-8 + F. oxysporum	40d	32.5bc	7.2c	1.05cd
Rh-8 + Verticillium	22fg	33bc	7.2c	1.10bcd
Rh-8 + M. phaseolina	35e	33bc	6.7cd	1.03cd
F. oxysporum	75a	19.5f	3.75d	0.67de
Verticillium	40d	22.45e	3.66d	0.75de
M. phaseolina	63b	18.7f	3.5de	0.52e
Control	0i	30.5c	7.5b	1.15bc
	Ţ.	30.50		525

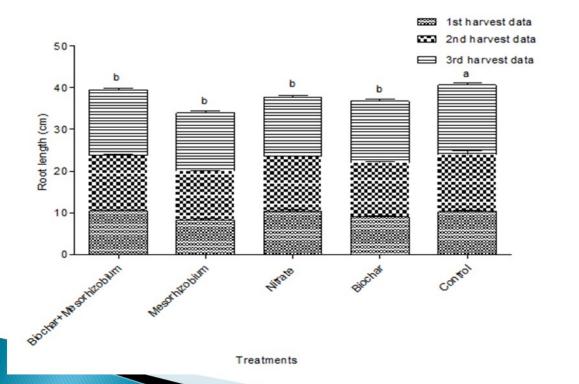

Plants after 20 days

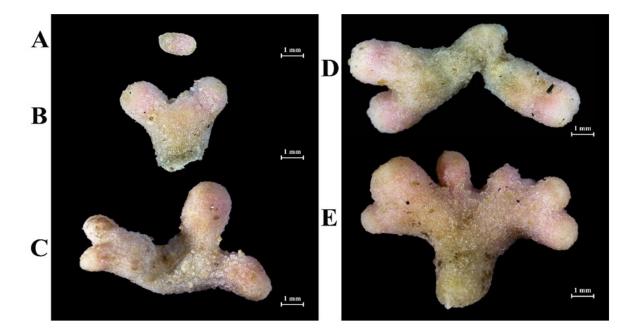

Plants after 40 days

Results



Dry weight




Treatments

Shoot length

Root length

- a) Nodule of control (Water) treated chickpea plants b) Nitrate treated nodule c) M. ciceri treated nodule d) biochar treated nodule and in e) Biochar +
- c) M. ciceri treated nodule d) biochar treated nodule and in e) Biochar + Mesorhizobium ciceri treated nodule after 60 days

Antagonistic effect of Treatments

- Treatments
- i. Mesorhizobium ciceri
- ii. Sugarcane Bagasse (SB) biochar (5g/each pot)
- iii. M. ciceri+SB Biochar
- iv. Control
- Poison Food Technique
- Diameter of the colony was measured till one week

Colony Diameter of Fungal Pathogens after 7 days

Treatment	Colony diameter (cm)							
	F. oxysporum	F. solani	Phytophthora spp.					
Biochar	1.43 b	1.20 b	1.13 b					
Mesorhizobium	1.21 c	1.18 b	1.14 b					
Biochar + Mesorhizobium	0.99 d	0.86 c	0.64 c					
Control	4.45 a	3.98 a	2.80 a					

Future research and developmental strategies

- Future research in rhizosphere biology will rely on the development of molecular and biotechnological approaches to increase our knowledge of rhizosphere biology.
- The proven antagonists can be tested in other crops/varieties and pathogens under different agro-ecological zones of Pakistan.
- Higher yield and cost-effective PGPR and their products should be used by agriculture farmers.
- Research on nitrogen fixation and phosphate solubilization by PGPR is progress on but research done on potassium solubilization is little all over the world.
- Fresh alternatives should be continuously explored for the use of bio inoculants.

Continue..

- The application of multi-strain bacterial consortium over single inoculation could be an effective approach for reducing the harmful effects of stress on plant growth
- An efficient delivery method and carrier be investigated for longer benefits.
- Molecular screening of effective isolates should be done and available antagonists can be genetically improved for better outputs.
- The synthetic metabolites / products released by antagonists should also be tested
- An integrated approach to be worked out for disease control as biological control alone may not be effective when applied in the field.
- PGPR can also be used as bioremediation. So, will be helpful in cleaning the environment.

Conclusion

- PGPR are economically and environmentally beneficial for plant growth promotion.
- PGPR may function as bio-fertilizers, bio-inoculant and bio-control other growth-promoting activities.
- In the future, they might replace chemical fertilizers and pesticides which have many hazardous effects on agriculture.

Research Project

- Research Project entitled "Utilization of plant growth promoting and nodule forming rhizobacteria in the integrated control of root infecting fungi of Sunflower and Soybean" Funded by HEC, Islamabad (2003-06).
- HEC project: "Surveillance and pathogen characterization of bacterial canker of stone fruits using biochemical and molecular methods and its biomanagement".
- PGTF-INT/15/KO7-project: "Surveillance and pathogen characterization of bacterial canker of stone fruits using biochemical and molecular methods and its biomanagement".
- PARB funded Project: "Development of Bio-pesticide for the Control of Soil-borne Diseases of Tomatoes and Chilies caused by Pythium and Phytophthora spp."

Publications

- M.Inam-ul-Haq, S.R.Gowen, N.Javed, F.Shahina, M.Izhar-ul-Haq, N.Humayoon and B.Pembroke. 2007. Antagonistic Potential of Bacterial isolates Associated With Entomopathogenic Nematodes Against Tomato Wilt caused by Fusarium oxysporum f.sp. lycopersici under Greenhouse Conditions. Pak. J. Bot. 39(1): 279-283.
- Javed, N., S.R.Gowen, M.Inam-ul-haq and S.A.Anwar. 2007. Protective and curative effect of neem (Azadirachta indica) formulations on the development of root-knot nematode Meloidogyne javanica in roots of tomato plants. Crop Protection 26: 530-534.
- N.A.Khan, M.Inam-ul-haq and M. Aslam Khan. 2009. Growth comparison of local and exotic strains of Oyster mushrooms on different agricultural wastes. Pak. J. Phytopathol. 21(2):139-143.
- M.Inam-ul-Haq, Said El-Hassan, S.R.Gowen, N.Javed. 2009. Effects of two rhizobacterial isolates and neem cake application on control of chickpea wilt caused by Fusarium oxysporum f. sp. ciceris. Arab Journal of Plant Protection (1):103-110.
- M. Inam-ul-Haq, N.Javed, M.Ahsan Khan, M.J.Jaskani, M.M.Khan, H.U.Khan, G.Irshad and S.R.Gowen. 2009. Role of temperature, moisture and *Trichoderma species* on the survival of *Fusarium oxysporum* f.sp. ciceri in the rainfed areas of Pakistan. Pak. J.Bot. 41(4):1965-1974.
- Tariq, J.A., M. I. Haq, F. Y. Hafeez, S.T. Sahi and M.M. Khan. 2011. Potential of rhizobacteria for the biocontrol of *Meloidogyne javanica*. Pak. J. Agri. Agril. Engg. Vet. Sci. 27(1): 66-72.

Continue...

- Shakoor, Sundas, Muhammad Inam-ul-Haq, Shaghufta Bibi and Raees Ahmed. 2015. Influence of root inoculations with vesicular arbuscular mycorrhizae and rhizomax for the control of dry and wet root rot of chickpea. Pak. J. Phytopathol., 27(02): 201-206.
- Muhammad Inam-ul-Haq, Muhammad Ibrahim Tahir, Rifat Hayat, Rabia Khalid, Muhammad Ashfaq, Muhammad Jamil, Saadia Naseem and Zahid Ali. 2015. Bioefficacy of rhizobacterial isolates against root infecting fungal pathogens of chickpea (Cicer arietinum L.). Journal of Plant Pathology and Microbiology S3: 011. doi:10.4172/2157- 7471.S3-011
- Shazia Shahzaman, M. Inam-ul-Haq, Tariq Mukhtar and M. Naeem. 2015. Isolation, identification of antagonistic rhizobacterial strains obtained from chickpea (*Cicer arietinum* L.) field and their *invitro* evaluation against fungal root pathogens. Pak J Bot 47(4): 1553-1558.
- Shagufta Bibi, M.Inam-ul-Haq, Abid Riaz, Saad Imran Malik, M.Ibrahim Tahir and Raees Ahmed.2017. Screening and characterization of rhizobacteria antagonistic to *Pseudomonas syringae* causing bacterial canker of stone fruits in Punjab and KPK. Int. J. Biosci. 10(05):405-412.
- Hyder, Sajjad, Muhammad Inam-ul-Haq, Shagufta Bibi, Aamir Humayun Malik, Salman Ghuffar and Shomaila Iqbal.2017. Novel potential of *Trichoderma* Spp. As biocontrol agent. Journal of Entomology and Zoology Studies. (JEZS) 5(4): 214-222

Books & Booklet

- M. Inam-ul-Haq, Shazia Shahzaman, Ch. Abdul Rauf. 2011. Chanay ki Kasht. A booklet.
- Book, Plant Growth Promoting Rhizobacteria (PGPR): Prospects for Sustainable Agriculture.M.Inam-ul-Haq, Sajjad Hyder, Tahira Nisa, Shagufta Bibi, Sohaib Ismail and M.Ibrahim Tahir Chapter: Overview of Biopesticides in Pakistan:PP 255-268-Online Available 27 June 2019.Springer-Nature.